

I. Utilisation simplifiée du logiciel REGRESSI

Le tableau ci-dessous donne les mesures de la puissance absorbée par une résistance R en fonction du courant la traversant. Nous voulons déterminer R.

I(mA)	0	2	5	10	20	40	100
<i>P(W)</i>	0	0.019	0.12	0.47	1.9	7.5	47

1. Entrer des données

Un fois le logiciel ouvert cliquer sur **Fichier/ Nouveau/Clavier** : une fenêtre d'entrée des variables s'ouvre. Entrer l'abscisse en premier.

Entrée de données au clavier									
Commentaire									
Variables expé	Variables expérimentales								
Symbole	Unité	Minimum	Maximum						
1	mA	0							
Р	W	0							
		0							
		0							
La première var	iable est la variat	ole de tri et l'absci	isse du graphe						
Tri automatio	ue selon la prem	ière variable							
Chacune des a	utres variables dé	finit une ordonné	e						
Paramètres ex	périmentaux	-	OK						
Nom	Unité								
		×	Abandon						
🔲 Incrémentati	on automatique	?	Aide						
Essayez de travailler en S.I. sans préfixe m k (sauf kg !)									

Cliquer sur **OK**. Une fenêtre Grandeur s'ouvre, entrer les valeurs

1TSI

Sec.	Regressi ·	Gran	deurs]									
\square	Fichier	Editio	n Fenêtre	Pages	Options	Aide						
8	2]	(Gran	deurs 🛛 🕍	Graphe	Fourier	Statistique				Euler
	Param	nètres	🛄 Varia	ibles 🛓	Express	ions						
		1	74	X		Δ	F	<u>B</u>	B <mark>a</mark>	φ	90	
	Trier	Ajo	uter Sup.	colonne	Sup. ligne	Incertitudes	Ajouter page	Imprimer	Copier	Continuité	Degré	
i	I	12/2	Р									
	mA		W	1								
0	0,00	0	0,000									
1	2,00	0	0,0190	_								
2	5,00	0	0,1200	_								
3	10,0	0	0,4700	_								
4	20,0	0	1,900	_								
5	40,0	0	7,500	_								
6	100,	0		1								
				_								

2. Afficher et exploiter un graphe

Icône de fenêtre Graphe : pour visualiser le graphe.

Icône axes : pour changer l'aspect du graphique, choisir l'abscisse et l'ordonnée, rajouter une courbe...

Pour Afficher les coordonnées d'un point : pointer la courbe directement ou avec le réticule (dans *Outils*). Dans les 2 cas les coordonnées sont affichées en bas du graphe.

3. Créer ou supprimer une grandeur

Il faut pour cela revenir sur la fenêtre Grandeur avec :

Y permet d'ajouter une grandeur, expérimentale ou calculée.

Création d'une grandeur		×
Type de grandeur	Symbole de la grandeur Unité de la grandeur	✓ <u>O</u> K
○ Grandeur calc. ○ Dérivée	Commentaire Etiquette de graphe = commentaire	<u>?</u> <u>A</u> ide
 ○ Intégrale ○ Lissage ○ Variable texte 	Variable expérimentale	
Paramètre texte		

2

4. Modélisation

Soit on choisit

ouvre (ou ferme) le volet modélisation (menu local modéliser)

	Utiliser le	e clic droit	pour ouv	rir le mer	nu loc	
	📉 Fichier	Edition	Fenêtre	Pages	Opti	
	😑 🔁 🕿	2		Grand	leurs	
		_				
	/ ⊨ n ^g	/ t a _	L 🕰			
	V 🗹 🖌	· 🚮 🦷			1	
	Expression	n au moa	ele		R	
	🔄 🌈 Aju	ister	✓ Tracé :	auto.		
			1.41° - 41			
	Resultats	de la mo	delisation			
					∢ 33	
un modèle prédé	efini : droit	e, parab	ole, etc.	avec	l'icôn	e
Differition allow						X
	e modelisatio	n finia I 🦳 I	cu. la			
Manuell	e / Prede		Filtres		tions	
	inéaire	1	Affine		\triangle	arabole
Exp	onentielle	⊁ъ	ponentiell	e	ر s	igmoïde
Pu	issance	1	Michaelis	G	auss	Lorentz
			adam 🗖	A:4-	/ A1	
<u>Kempla</u>	cer modele	ADar		Alde		Juer modele

Soit on entre les modélisations sous la forme y(x)=f(x) par exemple $P(I)=a^{*}I^{*}I$ (le texte sera pris en compte à la suite d'un clic sur le bouton \checkmark)

Définition d'une modélisation						
🔞 Manuelle 🖌 Pré	édéfinie 🔚 Filtres 🔛	Oscillations				
Type de modélisation						
Fonction	Equa Diff ordre 1	Equa Diff ordre 2				
P(l)=						
<u>Syntaxe</u>						
Remplacer modèle	e 🗶 <u>A</u> bandon 🍞 <u>A</u>	Aide 🖌 Ajouter modèle				

On peut lire la pente (et donc R pour notre exemple) dans Résultats de la modélisation.

Le coefficient de corrélation (r) est un indicateur qui permet de juger la qualité d'une modélisation. D'une valeur comprise entre -1 et 1, il mesure l'adéquation entre le modèle et les données expérimentales.

II. Utilisation simplifiée du logiciel EXCEL

A titre d'exemple, on s'intéresse à un circuit électrique RLC série ($R = 470 \ \Omega$, $L = 1 \ H \ et \ C = 470 \ nF$) alimenté par une tension alternative sinusoïdale de valeur efficace 5 V.

On étudie la tension efficace aux bornes du condensateur en fonction de la fréquence du courant.

1. Entrer des données

Lancer le logiciel Excel. Dans la feuille par défaut **(Feuil1)**, saisir le tableau de mesures (Entrer l'abscisse en premier).

2. Afficher et exploiter un graphe

En faisant glisser la souris, sélectionner la série de données. La 1^{ère} colonne sera automatiquement les abscisses et la deuxième les ordonnées.

Cliquer sur l'icône Assistant Graphique (ou menu Insertion puis Graphique) :

×.	Microsof	t Excel	- circuit RL	C.xls					_		×
8	Eichier	Edition	<u>A</u> ffichage	Insertion	Forma <u>t</u>	<u>O</u> utils	Données	s Fenêtre	2.	- 8	×
	🖻 🔒	a 🔁	a 🖓 🖉	1 🖁 🖁	1 KD +	🤹 Σ	- 🗟 💈	è ا (الله)	10%	• [2) "
Ari	al		• 10 •	GI S	=		€		<mark>∆</mark> istant G	iraph	» iaue
	A23	-	f _×							a april	444
	Α	λ	В	(>	D		E		F	
1	R = 470	ohms									-
2											

L'assistant graphique s'ouvre.

Dans Type de graphique, sélectionner Nuages de points (et non pas Courbes).

Assistant Graphique - Étape 1 sur 4 - Type de Graphique ? 🔀
Types standard Types personnalisés Type de graphique : Sous-type de graphique : Mistogramme Barres Courbes Secteurs Nuages de points Aires Anneau Radar Surface Bulles Boursier
Nuage de points reliés par une courbe lissée. Maintenir appuyé pour <u>v</u> isionner
Annuler < Précédent Suivant > Ierminer

Cliquer sur le bouton **Suivant**.

Assis Plag	tant Grap e de donnée	hique -	Étape 2 : •	sur 4 - I)onnées	source	du gra	ар ?	
	16,00 14,00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0	100	200	300	400	500	600	← Série1	
Pla Sé	age de <u>d</u> onn rie en :	ées : 📑 C Lignes ⓒ Colonr	suil11\$A\$4 nes	\$B\$20				J	
]		Annuler	< <u>P</u>	récédent	Suiva	nt >	Termine	r

Par défaut, la série de données porte le nom « **Série1** ». Pour changer de nom, cliquer sur l'onglet **Série**, puis choisir un nouveau nom dans le champ correspondant :

lssistant Graphique -	ssistant Graphique - Étape 2 sur 4 - Données source du grap 👔 🔀						
Plage de données Séri	e						
16,00 12,00 10,00 6,00 4,00 0,00 0,00 0,00	200 300	400 500 600					
Série	<u>N</u> om :	R = 470 ohms					
	Valeurs <u>X</u> :	=Feuil1!\$A\$4:\$A\$20					
Ŧ	Valeurs <u>Y</u> :	=Feuil1!\$B\$4:\$B\$20					
Ajouter Supprimer							
Alouter Supprimer	1						
Alouter Supprimer	1						

Notre série de données s'appelle désormais « R = 470 ohms ».

Cliquer sur le bouton Suivant.

Assistant Graphique - Étape 3 sur 4 -	- Options de Graphique 🛛 🔹 🔀
Titres Axes Quadrillage Légend Titre du graphique : Etude d'un circuit électrique Axe des ordonnées (X) Fréquence (Hz) Axe des grdonnées (Y) : Tension efficace (V) Axe des (X) superposé : Axe des (Y) superposé :	te Étiquettes de données Etude d'un circuit électrique
Annuler	<pre></pre>

Après avoir rentré les différentes informations du graphe (titre, abscisse, ordonnée), cliquer sur **Suivant** puis **Terminer**.

Vous pouvez ensuite mettre en forme le graphe :

- Changer la police et la taille du texte

- Changer la couleur de fond (clic droit, puis Format de la zone de traçage)

- Ajouter un quadrillage vertical (clic droit, puis **Options du graphique** puis **Quadrillage)**

- Changer le format de l'axe des abscisses (clic droit, puis **Format de l'axe**)

Etc ...

Pour ajouter une courbe sur le même graphique :

Sélectionner le graphique et après un clic droit, cliquer sur **sélectionner des données**. Cliquer sur le bouton **Ajouter**. Par défaut, la nouvelle série de données porte le nom « **Série2** ». Choisir un nouveau nom dans le champ correspondant.

Pour sélectionner les données en abscisse (X), cliquer sur l'icône suivante :

<u>N</u> om :	R = 560 ohms	<u></u>
Valeurs \underline{X} :		
Valeurs <u>Y</u> :	={1}	<u>.</u>

Dans la feuille **Feuil1**, sélectionner avec la souris les données en abscisse puis fermer la fenêtre suivante :

Données source - Valeurs X:	? 🔀
=Feuil1!\$D\$4:\$D\$20	F

Procédez de la même façon pour les données en ordonnées (Y).

Cliquer sur le bouton **OK**. Nos 2 courbes sont alors sur le même graphe.

3. Création d'une grandeur calculée

Exemple : reprendre l'exemple utilisé au I. Rentrer les variables puis calculer la tension aux bornes de R grâce à la relation P = UI.

Faire le calcul pour le premier couple de données. Il faut maintenant que le logiciel <u>réalise le même</u> <u>calcul pour les autres valeurs</u>. Pour cela, une méthode rapide existe : on utilise une « poignée de recopie ».

Sélectionner la cellule dans laquelle vous avez rentré la formule, puis **prendre la poignée de recopie située sur le coin droit en bas de la cellule et la tirer jusqu'en bas de votre tableau** : toutes les valeurs sont alors calculées automatiquement.

4. Modélisation

Tracer la courbe à modéliser.

Cliquer avec le bouton droit de la souris sur un des points du graphique, et choisir **Ajout d'une courbe de tendance**.

Choisir le type de fonction pour l'extrapolation (suivant l'allure).

Cliquer sur l'onglet **Options** puis cocher aussi les cases **Afficher l'équation sur le graphique** et **Afficher le coefficient de détermination (R²) sur le graphique**.

Attention, il faut réfléchir : le point O (0,0) est-il théoriquement sur la droite ? Si oui cocher la case correspondante. Si non, laisser cette case décochée.

Cliquer sur **OK**. L'équation de la droite est affichée. Le coefficient de détermination (r^2) est un indicateur qui permet de juger la qualité d'une modélisation. D'une valeur comprise entre **0 et 1, il mesure l'adéquation entre le modèle et les données expérimentales**. Plus il est proche de 1 plus le modèle proposé est proche de la courbe.