Lentilles minces sphériques

LE COURS

1)	Parmi les propositions suivantes, lesquelles sont exactes ?
	 a. Les foyers principaux F et F' sont conjugués. b. Plus la distance focale d'une lentille convergente est grande plus les rayons convergent. c. Une lentille biconvexe est convergente. d. Une lentille divergente a une vergence négative. e. L'image d'un objet réel par une lentille divergente est toujours virtuelle. f. Un grandissement transversal négatif indique que l'image est plus petite que l'objet. g. Un grandissement transversal négatif indique que l'image et l'objet sont de part et d'autre de la lentille.
2)	Soit une lentille mince convergente. Parmi les propositions suivantes, lesquelles sont exactes ?
	 a. Un faisceau incident parallèle à l'axe optique converge derrière la lentille. b. Elle donne forcément d'un objet réel une image réelle. c. Si l'objet est situé entre le foyer objet et le centre optique, l'image est plus grande que l'objet. d. Un objet virtuel donne forcément une image réelle.
3)	On projette l'image d'un objet réel sur un écran avec une lentille convergente. Il faut que :
	 a. L'objet soit situé entre le foyer objet et le centre optique. b. L'objet soit situé avant le foyer objet. c. La distance objet écran soit au moins égale à 2f'. d. La distance objet écran soit au moins égale à 4f'.
4)	On projette l'image d'un objet sur un écran avec une lentille divergente. Il faut que :
	 a. L'objet soit virtuel et situé entre le foyer objet et le centre optique. b. L'objet soit réel. c. L'objet soit virtuel et situé après le foyer objet.
5)	Soit une lentille mince convergente. Soit un objet réel transverse AB tel que A est situé sur l'axe optique en avant du foyer objet. L'image est :
	 a. réelle et de même sens que l'objet. b. réelle et renversée. c. virtuelle et renversée. d. virtuelle et de même sens que l'objet.
6)	Soit une lentille mince divergente. Soit un objet réel transverse AB. L'image est :
	 a. de même sens que l'objet et plus grande. b. de même sens que l'objet et plus petite. c. renversée et plus petite. d. renversée et plus grande.

EXERCICES

 $\label{eq:continuous} \begin{array}{l} \square \ \ \mathbf{a}. \ \ \overline{O_1 A} \ = \mbox{-3f'/2}. \\ \\ \square \ \ \mathbf{b}. \ \ \overline{O_1 A} \ = \mbox{2f'}. \end{array}$

7)	On forme à l'aide d'une lentille convergente de distance focale image f', l'image d'un objet placé à une distance 2f' en avant de la lentille. Parmi ces propositions, lesquelles sont justes ?
	 a. L'objet est réel. b. L'image est virtuelle. c. Le grandissement transversal vaut 1. d. L'image est renversée.
8)	On observe l'image d'un objet réel par une lentille convergente sur un écran. On approche l'objet de la lentille (sans toutefois s'en approcher à moins d'une distance focale), pour observer l'image, il faut :
	□ a. avancer l'écran. □ b. reculer l'écran.
9)	Soit une lentille mince divergente de distance focale image -10 cm. L'image d'un objet virtuel situé à 5 cm de la lentille est telle que :
	□ a. $\overline{OA'}$ = 3.3 cm. □ b. $\overline{OA'}$ = 10 cm. □ c. G_{t} = 2. □ d. G_{t} = 2/3
10	Une lentille mince donne d'un objet AB situé dans le plan focal image une image réelle.
	□ a. La lentille est convergente. □ b. $\overline{OA'}$ = f'/2. □ c. $\overline{OA'}$ = -f'/2
11))Un objet transverse lointain hors de l'axe est vu sous un angle de 2° au-dessus de l'axe optique d'une lentille de vergence 10 δ .
	 □ a. L'image se situe 10 cm derrière la lentille. □ b. L'image est de même sens que l'objet. □ c. La taille de l'image est de 3.5 mm. □ d. La taille de l'image est de 2 mm.
12	Où faut-il placé un objet AB pour qu'une lentille convergente donne une image droite 3 fois plus grande que l'objet ?
	□ a. $\overline{OA} = f'/3$. □ b. $\overline{OA} = -f'/3$. □ c. $\overline{OA} = 2f'/3$. □ d. $\overline{OA} = -2f'/3$.
13	Soient 2 lentilles, la première convergente, de centre O_1 et de distance focale image f', la deuxième divergente, de centre O_2 et de distance focale image -3f'. Les 2 lentilles sont accolées. L'ensemble donne d'un objet AB une image à l'infini.

f c. On peut remplacer le doublet par une lentille équivalent de distance focale image 3f'/2.

14) Soient 2 lentilles convergentes identiques de distance focale image f', de centres optiques
O_1 et O_2 , distantes de 3f'. On note F'_{eq} le foyer image du système global.
\Box a. $\overline{O_2F'_{eq}}$ = f'.
$oxdota$ b. $\overline{O_2F'}_{eq}$ = f'/2.
\Box c. $\overline{O_2F'}_{eq}$ = 3f'/2.
$oldsymbol{\Box}$ d. $\overline{O_2F'}_{eq}$ = 2f'.
15) Soient 2 lentilles convergentes, de distances focales image f' et 4f', de centres optiques O_1 et O_2 , distantes de 5f'.
 □ a. La distance focale de l'ensemble est 4f'/5. □ b. L'ensemble est afocal.
\Box c. Un faisceau cylindrique d'axe O_1O_2 a son diamètre multiplié par 4 après traversée des 2 lentilles.
\square d. Un faisceau cylindrique d'axe O_1O_2 a son diamètre divisé par 4 après traversée des 2 lentilles.
16)On place un miroir plan derrière une lentille convergente. Un objet est situé dans le plan
focal objet. L'ensemble donne une image :
🗖 a. dans le plan focal image de la lentille.
□ b. dans le plan focal objet de la lentille.
🗖 c. dans le même plan que l'objet.
□ d. renversée.
🗖 e. droite.